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gave these values as rational fractions up to m = 12, and Medhurst and Roberts 
113] gave four more values, up to m = 16. 
Department of Engineering Mechanics 
Virginia Polytechnic Institute 
Blacksburg, Virginia 

Department of Physics 
University of Connecticut 
Storrs, Connecticut 

1. C.-B. LING, "Tables of values of the integrals fl (xm/sinhvx) dx and fl (x"/coshPx) dx," 
J. Math. and Phys., v. 31, 1952, pp. 58-62. MR 13, 690. (Two misprints are here noted. On p. 59, 
the subscript of s' in the last equation of (8) should be m - 2p + 2r. Again, on p. 60, the ex- 
ponent of 2 in the first equation of (9) should be p + 1.) 

2. C.-B. LING & C. W. NELSON, "On evaluation of Howland's integrals," Annals of Aca- 
demia Sinica, no. 2, part 2, 1955, pp. 45-50. 

3. C. W. NELSON, "A Fourier integral solution for the plane-stress problem of a circular 
ring with concentrated radial loads," J. Appl; Mech., v. 18, 1951, pp. 173-182. MR 12, 880. 

4. C. W. NELSON, "New Tables of Howland's and related integrals," Math. Comp., v. 15, 
1961, pp. 12-18. MR 22 S 10203. 

5. J. W. L. GLAISHER, "Numerical values of the series 1 - 1/3n + 1/5n - 1/7n + 1/9n - 
," Messenger of Math., v. 42, 1912, pp. 35-49. 
6. J. W. L, GLAISHER, "Tables of 1 i 2 n + 3 4t 4 + etc. and 1 + 3- + 5n + 7-n + 

etc. to 32 places of decimals," Quart. J. Pure and Appl. Math., v. 45, 1914, pp. 141-152. 
7. H. T. DAVIS, Tables of Higher Mathematical Functions, Vol. 2, Principia Press, Bloom- 

ington, Indiana, 1955. 
8. J. PETERS & J. STEIN, "Mathematical tables," Appendix of Peters' Ten-place Loga- 

rithmic Tables, Vol. 1, Ungar, New York, 1957. 
9. A. H. R. GRIMSEY, "On the accumulation of chance effects and the Gaussian frequency 

distribution," Philos. Mag., v. 36, 1945, pp. 294-295. MR 1, 311. 
10. L. S. GODDARD, "The accumulation of chance effects and the Gaussian frequency dis- 

tribution," Philos. Mag., v. 36, 1945, pp. 428-433. MR 7, 311. 
11. B. BUTLER, "On the evaluation of fJ (sin t/t)m dt by the trapezoidal rule," Amer. Math. 

Monthly, v. 67, 1960, pp. 566-569. 
12. K. HARUMI, S. KATSURA & J. W. WRENCH, JR., "Values of (2/ir) fJ (sin t/t)" dt," Math. 

Comp., v. 14, 1960, p. 379. MR 22 N 12737. 
13. R. G. MEDHURST & J. H. ROBERTS, "Evaluation of the integral (2/0r) fo (sin t/t)m. 

cos bt dt," Math. Comp., v. 19, 1965, pp. 113-117. 

Numerical Evaluation of the Elliptic 
Integral of the Third Kind 

By Charles H. Franke 

The purpose of this note is to point out a use of the addition formula for the 
elliptic integral of the third kind which significantly simplifies the numerical evalu- 
ation of the function. 

The elliptic integral of the third kind may be defined by 

JI (1 + n sin2 a)(1 - k2 sin2 a)112 

Two standard power series are used to evaluate H(n, k2, 4) [2, p. 5], 
00 

H(n, k2, 4) = E a(j)A(j)k2j, 
j-o 

(1) (~j) = 2"(j)!)s ' A(j) = f 1 +d 22a(J)n in 
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00 

H(n, kA, )) = Eb(j)B(j)(1 -k2)j 
j=0 

(2) 6(j) 22j(2j)! B(j) = fsecatanad 

Although the series (1) converges for k2 sin2 4 < 1, it is not useful for numer- 
ical computation for k2 sin2 4 near 1. The series (2) converges only for 
(1 - k2) tan2 2 

< 1, and is not useful for numerical computation for (1 - k 2) tan2 k 

near 1. Therefore, neither series can be used when k2 sin2 4 is near 1 unless 
(1 - k2) tan2 k is significantly less than 1 (e.g., less than 0.7). A technique for 
evaluating II(n, k2, 4) for the range of the variables in which neither power series can 
be applied is through the application of the following addition formula [3, p. 13, 
116.02, 116.03], 

H(n, k2, 2) = H(n, k2, 0) + H(n, k2 ) -a 

2 arctan sin 0(1 - k2 sin2 )112 + sin (1-k2 sin2 t)J 
_ ~~~cos 0 + Cos: 

A = sin 0 sin 3 sin 0j n(n + 1) (n + k2) 11/2 

(3) B = 1 + n sin2 0 -n sin 0 cos 0(1 -k2 Sin2 4)1/2 

C = n/(n + 1)(n + k2) 112, 

G=Carctan(A/B) if 0 < n or 0 < k2 < -n < 1, 

= C tanhl'(A/B) if 0 < -n < k 2 < 1. 

A method in the literature for applying the addition formula is to fix # at a con- 
venient value, e.g., 450, and solve (3) for 0 [1]. If the solution is denoted by 0(l), then 
0(1) < p. This procedure may be repeated by using (3) withO = O'(1) to determine 6(2) 

In this way one may obtain a sequence .. *, ) with 0 j small enough for efficient 
computation. The difficulty in this approach is that the number of iterations neces- 
sary to reduce 0(j) below a given value increases as k2 approaches 1. For 4 = 900, no 
fixed number of iterations will suffice to reduce 0(j) below a fixed value for all k2 < 1. 

We will show that, if the addition formula is used as a "double-angle" formula, 
then one application is sufficient for computational purposes. 

Taking A3 0 in (3) and solving gives 

* 
2 

_ 
1 -Z sinm6 142(1 + cos 4)) 

where z (1 - k2sin2 ck)1/2 Therefore, 

2 1 -Z 
tan 20 = _ _ _ _ _ _ _ _ 

k2(1 + cos p)-1 + Z 

Rationalizing the numerator one obtains 

tan 2 0 = sin 2o4) < (1 - + 2os1/2 Cos2 4+ COS 40 + z(1 + COS p) 
- 

/ 
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Therefore, (1 - k2) tan2 0 ? (1 - k2)"2 and power series (2) can be applied. 
Based on the above, a FORTRAN IV program has been written using the following 

methods of evaluation. 
(a) k2 < .64. Power series (1). 
(b) (1 - k2) tan2 4 < .64. Power series (2). 
(c) k > .64, (1 -k2) tan2 4 > .64. A single application of the double-angle 

formula followed by power series (2). (We note that, in the worst case, 4 = 90?, 
kf = .64 + 6, the convergence of the power series used is like .6'.) 

The accuracy and timing of a program based on the method given above are 
dependent on the manner in which the computational details are handled. (E.g., 
the obvious recurrence formula for the A (j) of (1) cannot be used when I n I is near 
zero.) The following remarks are meant to kive some indication of the efficiency of a 
particular program. 

The following chart shows the number of times an error of given magnitude oc- 
curred in the eighth significant digit in the computation of Il(n, k2, 4) for n = 1, 5, 
10, 50, 100; k2 = 0.0, 1.0(0.1); 4 = 100, 900(100). 

Error 0 1 2 3 4 5 6 
Times Occurred 242 183 39 20 2 1 3 

Near the pole fl(n, 1, 90?) = a, the relative error in the computation of 
[I(n, k2, 900) [II(n, 1, 4)] was about the same as the relative error in the computation 
of 1 - k2[(ir/2) - 4]. (A program could be written which accepts 1 - k2 and 
(r/2) - 4 as alternate inputs.) 

The average time required to evaluate HI(n, k2, 4) for n = 1,100(3); k2 = 0.0, 
1.0(0.1) and 4 = 10, 900(10) was 3.73 milliseconds. The time required to compute 
11(1., .64000001, 900) was 10 milliseconds. 
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